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Abstract. As robots are expected to accomplish human-level manipu-
lation tasks, the demand for formal knowledge representation techniques
and reasoning for robots increases dramatically. In this paper we de-
scribe how to make use of heterogeneous ontologies in service robotics.
To illustrate the vision, we take the action of pouring as an example.
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1 Introduction

In this paper we address the challenge of providing robotic agents with the
substantial and diverse kinds of knowledge required for the execution of intel-
ligent activities. Whereas ontologies are regularly employed for aspects of such
knowledge, many further distinct sources of information equally important for
intelligent action have not so far been considered from an explicitly ontological
perspective. The framework under development in our Everyday Activities Sci-
ence and Engineering research centre (EASE) attempts to move in precisely this
direction in order both to extend what is typically understood as the scope of
‘ontology’ and to increase the degree of sophistication and naturalness of robotic
actions and interactions with humans and other robots.

The distinct kinds of knowledge relevant can be characterized succinctly with
the help of an example. Consider an instruction to a service robot to ‘pour’ some
substance into a container – as in ‘pour the coffee into the mug’. In order to
successfully and appropriately perform this action, the robotic agent must first
have knowledge concerning ‘coffee’ and ‘mug’ and mechanisms for grounding
these linguistic phrases into the practical situation to deliver references, as well
as knowledge that ‘pouring’ is a movement involving the entity poured and
several other entities not explicitly referred to in the linguistic utterance, such
as the container from which and with which the pouring takes place. Abstract
knowledge of this kind is often provided in ontology representations.

In addition, however, the robot also needs to draw on substantial experiential
knowledge: for example, if the container holding the substance to be poured is
held too high, there is likely to be spillage – knowledge of this kind can be derived
both by practical experimentation in the real world and by simulation involving
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naive physics. Moreover, the particular fine-grained actions to be performed vary
depending on the specific robot involved: grasping and movement instructions at
this level also need to be provided in order to more finely articulate the abstract,
or general, notion of pouring. The actual pouring action performed depends
further on the kind of material being poured (coffee acts differently to pancake
mixture or beaten eggs), on the destination of the pouring (into a mug, onto a
hotplate for frying, into a further liquid while being mixed), etc. The knowledge
of differences in the pouring action here is similarly drawn from combinations
of abstract knowledge, practical experiential knowledge and simulation of what
could occur given the physical parameters of the starting situation.

Most of these kinds of knowledge are not currently considered formally as
components of the ontological characterizations provided, which raises issues
concerning how these sources of information can be gathered and maintained as
a system gains experience and how their interaction can be specified in order to
flexibly solve problems. We argue that presenting all such knowledge from the
perspective of linked ontological specifications of distinct kinds offers a powerful,
elegant, and more integrative framework for robotic agent design.

2 Conceptual Apparatus

Several terminologies and concepts are necessary to enable robotic applications
to make use of formal knowledge representation and reasoning techniques.

2.1 Ontologies: purposes and organization

Intelligent systems require rich sources of knowledge in order to reason about
solutions to the problems they are designed to deal with. Such knowledge can
become both extensive and complex in its internal organization, requiring effec-
tive software engineering techniques for development, maintenance and use. In
Artificial Intelligence (AI), it has long been common to employ notions of for-
mal ontology to meet these challenges [12]. In the classic definition of Gruber, an
ontology is an “explicit specification of a conceptualization” [11], that formalizes
the types, properties, and interrelationships of concepts for particular domains
and which support automated reasoning techniques for problem solving within
those domains.

Ontologies share many structural similarities despite being written in dif-
ferent formats and languages. Most ontologies describe instances, classes, at-
tributes, and relations. Instances include objects such as humans, mugs and
coffee as well as abstract individuals like numbers. Classes are used to organize
objects and classes. For instance, an abstract person or a specific person called
Max Mustermann may be an instance of class Person. Again, a class called Mug
may have a super-class called Container. Instances and classes are generally
described by relating them to other parts and conceptual properties. These re-
lations are often called attributes, although they may be independent instances.
Relationships between instances specify how instances are related to each other.
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A concrete example is shown in Figure 1 in which a Pouring class is illustrated
with its related superclasses in the large-scale Cyc ontology [17].

Fig. 1. The ‘pouring’ action and super-classes in the Cyc ontology [17].

Ontologies are generally employed for several distinct tasks in addition to
capturing the relationships and entities within some domain. Some ontologies
are explicitly designed as top level ontologies: they provide broad organizational
constraints for modeling decisions independently of specific domains, thereby
imposing a well motivated modeling discipline for any particular concepts, re-
lations or combinations of concepts and relations required. Top level ontologies
explicitly orientate towards philosophical discussions concerning more traditional
ontological topics. The most well established top-level ontologies are Guarino,
Masolo and Borgo’s DOLCE [6], Smith and colleagues’ BFO [1], and Pease’s
SUMO[20]. The provision of top level ontologies is intended to increase inter-
operability across distinct system components, one of the primary reasons put
forward for adopting ontologies in information systems at all. When separate
components are specified in a manner consistent with the modeling decisions of
a top level ontology, the likelihood that information may be combined without
complications is increased and alignment across ontologies is more likely to be
effective [8].

As ontologies are developed, they can exhibit considerable size and complex-
ity. Maintaining them is then a challenge in its own right and a broad variety of
tools and, to a lesser extent, techniques to support this task have emerged. Many
ontologies are now organized into distinct modules which are then combined to
cover domains or areas of concern. Modules generally reflect ‘theories’ of some
particular subdomain and may themselves be more or less general in applica-
tion – the Cyc ontology, for example, is organized around an extensive library
of such micro-theories [17]. Modularity in ontologies may be pursued from the
initial design or be imposed post hoc.

Although ontologies all broadly target the representation of domains of knowl-
edge, the formal representation of specific ontologies often differ with respect to
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expressivity. Typically, top level ontologies will employ variants of first-order
logic, while larger, but shallower semantic web ontologies will employ variants of
description logic. There is then the usual trade-off between expressivity and com-
putational complexity. ‘Light’ versions of top level ontologies may consequently
be provided for practical applications.

2.2 Heterogeneous Ontologies

The increasing diversity and complexity of ontology applications have made
questions of best design practice increasingly important. The most traditional,
although still often practised, approach is to assume that a single top level ontol-
ogy should be sufficient to cover all domains. However, debate on just which top
level ontology would suffice for such a task has been ongoing for over 30 years
in AI and the proposals forthcoming are still primarily limited in generality to
particular domains or application areas.

An alternative approach is to accept that different communities and dif-
ferent areas of knowledge may require distinct modeling strategies. This latter
approach, relying on what are termed heterogeneous ontologies, has several ad-
vantages. First, It constitutes a logical extension of the notion of modular on-
tologies – whereas traditional modular ontologies are composed of subtheories
expressed in a common formal language and defined with respect to a common
set of entities, heterogeneous ontologies allow modules to vary not only with re-
spect to the domains that they are modeling but also with respect to the logical
expressivity and logical languages adopted. Second, reasoning with, and mainte-
nance of, complex ontologies is improved by virtue of the greater independence
of components.

In previous work in the area of spatial representations, we developed tech-
niques particularly supportive of heterogeneity [4]. Entire families of formal cal-
culi exist for qualitative reasoning about space and specific reasoning tools have
been developed that maximize performance for particular classes of spatial for-
malization. As a consequence, any enforcement of a common formalization within
a single logic would not only have demanded a homogeneity unmotivated by the
domains at hand but also have compromised the many fine-grained tailored rea-
soning solutions available. Building on this foundation, a general formal frame-
work has was specified and implemented within which heterogeneous modules
couched in distinct logics and drawing on diverse reasoning support can be com-
bined into single coherent specifications.

Central to this framework is the the notion of a hyperontology [16], a concept
defined and subsequently embodied within the Distributed Ontology Language
(DOL) specification, accepted as an OMG standard in 2016 [21]. DOL specifi-
cations allow ontology modules to be specified in any logic for which a transla-
tion mechanism has been defined and then be freely combined for the purposes
of hybrid reasoning. Permitting combinations of this kind generalizes beyond
alignment approaches by following ‘logic translations’ that flexibly map between
theories [15]. Multiple, overlapping and even conflicting formal specifications can
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thus be maintained simultaneously. A growing collection of heterogeneous on-
tologies, ontology components and inter-ontology mappings can be found in the
OntoHub semantic repository [7]. Heterogeneous ontologies offer several impor-
tant capabilities that we are now exploring in the context of defining ontologies
for robotics, as we shall now see.

2.3 Heterogeneous Ontologies from a Robotics Perspective

As robots start to accomplish human-scale tasks in everyday environments, the
need for knowledge representation and processing increases substantially due to
both the complexity of such environments and the lack of well-structured defini-
tions of tasks. Even when an ontology that covers all of the relevant concepts for
a corresponding domain can be created and used, the cognitive architectures of
robots need to map these concepts to other non-physical or cognitive components
of the robot. This has several important consequences.

First, robot ontologies [25] should be enriched in terms of relations such
as synonyms and similarity indices. This is mostly needed for interaction with
humans and processing task definitions. Since communication using natural lan-
guage involves considerable ambiguity and implicit information, ontologies for
robotic applications need to be sufficiently comprehensive to resolve these issues
correctly. Second, robots have to represent action concepts in terms of control
programs and parameters. For instance, an action called power grasp should cor-
respond to grasp controllers and, since it is a special type of grasping, parameters
such as applied force must be bound to certain intervals. Similarly, perception
concepts need to be captured in terms of perception programs and parameters.
Third, personal robots need to have mechanisms for logging their experiences in
order to use them to improve their skills. In order to make use of such experi-
ences in reasoning and learning, they must be represented in terms of the same
concepts that the robot ontologies have. And fourth, reasoning for robots often
includes a planning, or envisioning, or simulation component, which is useful
to either verify existing behaviors or create new ones. Similar to experiences,
robotic simulations need to use the same concepts for initializing scenarios and
generating datasets that the robot will use during actual execution for reasoning
and learning purposes.

Figure 2 illustrates an example of how our robotic application already makes
use of heterogeneity. In this example, the Cyc base ontology is extended with
concepts from the intelligent robotics domain such as the Robot concept and
capableOf relation [14]. As seen from the figure, PR2 (right) is a robot capable
of pouring. Some specific robot, PR2 9su6, may then first simulate a pouring
action, Pouring x76a, with a set of parameters that its planning algorithm deems
suitable. After it sees that the simulated behavior has the expected effect, it
actually executes a pouring action, Pouring 4gp1, with a similar parameter set.
During this execution, the robot perceives cup x143 with its perception module
and, using the semantic map of the environment and 6d pose of the cup, reasons
that that cup is actually on table a9kl. Thus, a procedural attachment of on-
Physically relation between the cup and the table is performed dynamically.
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Fig. 2. A Robotic Application Extending Cyc Ontology Action Classes

Crucially, the various areas of concern – the ‘pouring’ micro-theories, sim-
ulation and perception – all have different properties but nevertheless need to
be combined in the service of successful (and flexible) completion of the action.
These kinds of requirements are then natural candidates for treatment in terms
of heterogeneous ontologies. Whereas previous approaches to the use of ontol-
ogy in robotics have focused on the traditional knowledge representation aspects
of ontologies, native support for heterogeneity allows us to consider integrating
other important functionalities for ontologies as well.

2.4 Heterogeneous Ontologies from a Language Perspective

Work on processing natural language has also raised several opportunities for
beneficially employing heterogeneous ontologies. When analyzing or producing
natural language, it is common to posit a level of relatively shallow seman-
tics that is directly formed following principles of compositionality. This level
is typically underspecified with respect to context in that it does not commit
to specific world referents and may leave a variety of other aspects unresolved.
Interpretation then requires an additional step of contextualization.

Consider, for example, the sentence and straightforward corresponding un-
derspecified semantics given in example (1):

(1) a. Pour the water into the bowl.

b. e : pour′(e) ∧ actor(e, h1) ∧ actee(e, w1) ∧ spatial-destination(e, b1)

A semantics of this kind identifies the semantic type of the predicate at issue
and the semantic role relationships between the predicate and further discourse
entities introduced by the grammatical participants in the linguistic utterance.
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Each of these further entities may similarly be given a semantic type. The task of
contextualization then relates discourse entities to actual referents in a situation
and fills in linguistically underspecified aspects of the description.

These distinct levels of representation are addressed in terms of heterogeneous
ontologies in the work of Bateman, Hois, Ross and Tenbrink [5]. Here an extensive
linguistically motivated ontology of semantic types and relations was defined
for the shallow semantics produced by compositional analysis. This ontology,
called the Generalized Upper Model, is specified in description logic. Particular
areas within this ontology are then related to modular subtheories responsible
for further reasoning. As an example, the sentence (1a) makes reference to a
particular spatial relationship, that of an object moving along a path (‘into’).
The sentence itself makes no commitment to the kind of object involved, nor
to the details of the path. All that is specified is the end point of the path.
Nevertheless, on the basis of this abstract specification, it is still known that
following successful execution of the action (‘pouring’) the object (‘water’) is in
a location functionally controlled by the destination (‘bowl’). This is termed a
two-level spatial semantics [3].

Heterogeneous ontological specifications offer support for precisely these kinds
of multi-leveled representation. The shallow semantic ontology, the subtheories
characterizing particular kinds of motion and spatial relationships, as well as the
contextualized semantics anchored in specific physical situations are all allowed
their own independent existence, drawing on diverse kinds of formalizations as
required. Maintaining such distinct levels of specification permits much of the ex-
treme flexibility observed in real uses of spatial language to be covered, avoiding
premature commitments to interpretations that only follow in specific situations.
In the Cyc extract above, for example, the supertype MakingSomethingAvailable
is such an overcommitment, only applying to particular cases of ‘pouring’ and
not ‘pouring in general’.

This establishes a striking parallel with the heterogeneity requirements con-
sidered in our robotic application above. Work in cognitive linguistics and linguis-
tic construction grammar increasingly argues for accounts drawing on notions
of force dynamics [24] and simulation [9] for linguistic semantics in general. The
availability of simulation, experience logs and ontological information within a
heterogeneous specification for hybrid specifications for robotics therefore of-
fers a promising framework for integrating these requirements in a beneficially
complementary fashion. Thus, instead of relying solely on logical inference as
formerly pursued within linguistic semantics to work out, for example, that the
water in example (1) above ends up in the bowl, we can augment this both with
experiential knowledge about what happens when some agent attempts this and
with direct simulation following physical laws as suggested in Figure 2.

3 Capturing and using heterogeneity: an example

To emphasize the need for heterogeneous ontologies in the context of mobile
robotics and everyday manipulation activities, we elaborate further on the ac-
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tion of pouring because it is well understood, highly context dependent (and
thus knowledge intensive), and still challenging for modern robotics platforms;
the requirements involved here generalize well to a rich variety of similarly com-
plex actions. Despite this often under appreciated complexity, humans can pour
with ease even in unknown environments and using previously unknown objects.
Enabling a robot to perform pouring actions at the scale of human performance
requires deep knowledge about the activity, the objects involved, and how to
handle them.

Assume a humanoid robot capable of picking up objects in a human-like
fashion. The actual performance of the pour action depends on many contextual
factors such as the physical properties of the substance that is poured (e.g.,
thickness), from where it is poured (e.g., pot or glass), and to which destination
it is poured. Some pouring variants may even require pouring the substance in
a specific pattern, e.g., to evenly spread sauce on a pizza dough before baking.

Fig. 3. Overview of the system for the semantic interpretation of geometric object
models. Figure is adapted from Tenorth et al. [26].

One highly relevant example from the household domain is to pour dough
mix onto a frying pan or a pancake maker in order to cook the dough. Let us
assume the dough mix is inside of a container from which the robot can pour and
that the action is performed within a perception-action loop in which the robot
perceives the pose of the dough mix container and other visual properties such
as its size. Let us further assume that the robot does not know the functional
parts of the object in advance, and that the robot can find a mesh corresponding
to the object in a mesh repository (by matching the visual features); a rich set
of different mesh formats are widely supported, including Collada meshes which
are represented using XML format. Information encoded in the mesh has no
formal semantics and is not directly captured by common ontology formalisms,
but nevertheless contains valuable information for task execution. Thus, we de-
sire an (intermediate) representation of the information encoded in the mesh in
terms of the robot’s ontology. Using the algorithm described in [2], we can auto-
matically find functional parts of the object, such as its handle, based on fitting
primitive geometry with the mesh. This procedure is depicted in Figure 3. Thus,



The ease ontology framework 9

we can infer that Container(?c) ∧ has part(?c, ?handle) ∧Handle(?handle) by
exploiting implicit knowledge encoded in the mesh.

A robot is often required to combine information from a variety of hetero-
geneous sources in order to draw the right conclusions. Light-weight simulation,
where some actions such as navigation are abstracted away [19], can be used
to verify the feasibility of some manipulation actions given a rough model of
the environment (is a particular pose reachable? is a given location visible from
another?). Also, the object’s visual features are accessible to the robot through
internal data structures encoded by the perception system. The format of such
object designators is usually a nested list of key-value pairs where the keys cor-
respond to feature names and the values to the feature values (without formal
semantics). For generating an appropriate grasp point, for example, the robot
has to combine knowledge about functional parts of the object with its perceived
pose. Furthermore, spatial relations between involved objects are highly relevant
during pouring because the container needs to be functionally above-of the pour-
ing destination so that the poured substance is not spilled. Seen traditionally,
the robot’s ontology consequently needs to be augmented by a rule that implies
this spatial relation based on some spatial calculus that internally accesses the
data structures of the perception system. In terms of heterogeneity, this can
equally be seen as a case of formally linking distinct areas of formalization.

Similarly, the robot may also need to reason about the effects and failures
of actions and how to recover from them. Failure handling is usually explicitly
encoded in plans without a formal causal model that describes, for example, that
spilling is likely to happen if the source container is held too high. Such motion
constraints can be inferred from experiential and simulated knowledge. Action
effects concern individuals involved in the action and so cannot be expressed
terminologically using OWL. In the case of pouring dough mix onto a pancake
maker, the robot may want to reason about the cooking process that was started
by the pouring action. Using rules we can express this relation between the action
and the cooking process as follows:

1 HeatingProcess (? heating) ∧ causedBy (?heating , ?src) ∧
2 thermicallyConnectedTo (?src , ?food) ∧
3 EdibleStuff (?food) ∧ (not Cooked)(?food) →
4 CookingFoodProcess (? cooking) ∧ causedBy (?cooking , ?src) ∧
5 objectActedOn (?cooking , ?food) ∧
6 processStarted (?heating , ?cooking)

This rule implies that a cooking food process starts when some edible stuff is
thermically connected to a heating source which is the cause of a heating process,
that the cooking process affects the edible stuff, and that the heating process is
the cause for the cooking process. Involved objects are assumed to be thermically
connected if one object is on top or inside of another. The existence of this pred-
icate is computed on demand (cf. Figure 4) exploiting the heterogeneous data
structures at hand (e.g., perception, action, sensors, semantic models). Formally
linking the predicates given in such specifications with their simulated effects,
perception and with previous experience logs opens up such semantics to a far
more ‘embodied’ and ‘experiential’ level of representation and reasoning.
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Fig. 4. A visual description of the cooking rule effects. Note that the rule requires new
chains of properties to be established between particular pairs of individuals (?food
and ?heating, ?src and ?heating) passing through a new individual (?cooking), which
is not expressible in OWL restrictions.

4 Related Work

The need for ontologies and heterogeneous information sources is increasingly
evident in robotics research. The Proteus project [18] employs ontologies to make
explicit the semantics of models assumed by domain-specific languages, and to
enable knowledge reuse. Krüger et al. propose Object-Action complexes (OACs)
[13, 28], symbolic representations of sensorimotor experience and behaviors which
formalize the connections between objects and associated actions. OACs have
two main components: a symbolic description of an object (a prediction function
defined over an attribute space, together with prediction reliability measures),
and a specification for execution and learning of the OAC.

The affordance network ontology for robots (AfRob) [27] is another knowledge-
enabled robotic framework that represents affordance relations of robots for an
object dataset. The affordance concepts are also grounded in simple visual per-
ception algorithms to identify certain shapes and spatial relations between ob-
jects/features. The affordances are used to assist object perception and scene
interpretation, as well as to suggest grasps that are appropriate for the function
of an object. AfRob also pushes beyond defining ontology concepts in purely log-
ical terms, and is therefore an example of a heterogenous approach to ontology
construction. In the work reported here we seek to improve the formalization of
such heterogeneity.

Schlenoff et al. have initiated the IEEE-RAS working group Ontologies for
Robotics and Automation (ORA) [23], whose goal is to develop standards for
knowledge representation and reasoning in robotics. Although not a hybrid on-
tology, it is noteworthy for being by far the largest effort to create robotics
ontologies to date, and the group has presented a proposal for a core ontology
for robotics [22] (now adopted as an IEEE standard), and also produced on-
tologies for more specific use cases, such as industrial automation [10]. It uses
well-established techniques for ontology development as well as previously estab-
lished ontologies such as Pease’s SUMO [20]. The benefit of more heterogeneity
can also be seen in extensions such as the inclusion of position information,
however: instead of simply adding these concepts below top-level concepts [10],
the heterogeneous approach would allow more flexible access to distinct orga-
nizations of spatial information simultaneously, supporting multiple reasoning
solutions as well as more modular development and maintenance.
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5 Outlook

Standards and developments such as those mentioned in the previous section are
necessary for the exchange of software and scientific results between institutes.
They must also, however, by their very nature be relatively conservative in terms
of the knowledge representation techniques employed. For the kinds of future
research into flexible and intelligent robotic behaviors considered here, we believe
it essential that more diverse sources of knowledge, experience and perception be
related cleanly to the overall enterprise of pursuing ontological representations
for robotics. An inherently heterogeneous framework of the kind proposed here
is one step towards supporting such capabilities.
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