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Abstract— We investigate the perception and reasoning task
of answering queries about realistic scenes with objects of daily
use perceived by a robot. A key problem implied by the task
is the variety of perceivable properties of objects, such as
their shape, texture, color, size, text pieces and logos, that go
beyond the capabilities of individual state-of-the-art perception
methods. A promising alternative is to employ combinations of
more specialized perception methods. In this paper we propose
a novel combination method, which structures perception in
a two-step process, and apply this method in our object
perception system. In a first step, specialized methods annotate
detected object hypotheses with symbolic information pieces.
In the second step, the given query Q is answered by inferring
the conditional probability P(Q | E), where E are the symbolic
information pieces considered as evidence for the conditional
probability. In this setting Q and E are part of a probabilistic
model of scenes, objects and their annotations, which the
perception method has beforehand learned a joint probability
distribution of. Our proposed method has substantial advan-
tages over alternative methods in terms of the generality of
queries that can be answered, the generation of information
that can actively guide perception, the ease of extension, the
possibility of including additional kinds of evidences, and its
potential for the realization of self-improving and -specializing
perception systems. We show for object categorization, which
is a subclass of the probabilistic inferences, that impressive
categorization performance can be achieved combining the
employed expert perception methods in a synergistic manner.

I. INTRODUCTION

As autonomous robots are to perform manipulation tasks
that are more and more complex in environments that are
less and less structured we need to substantially scale their
object perception skills. Ideally, robots have to be capable
of perceiving any task relevant object in any task relevant
context. One of the big challenges here is that in most
situations the scenes that a robot has to perceptually interpret
include objects with different perceptual characteristics. A
scene on a breakfast table, for example, typically includes
textured objects such as jelly jars and cereal boxes, objects
characterized by their shapes such as bowls and cups, translu-
cent objects such as glasses, and small objects such as knives
and forks.

In the past, it has proven to be difficult to equip robots
with perception algorithms that can handle objects with very
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Fig. 1: PR2 looking at a breakfast table.

different perceptual characteristics. In most cases, scenes
were simplified to account for the perceptual capabilities of
the robot.

A promising alternative is the development of perception
systems that are capable of synergetically combining more
specialized algorithms to better scale towards natural envi-
ronments and scenes.

In this paper, we propose a specific framework for ob-
ject perception in scenes that include objects with different
perceptual characteristics. Our approach implements object
perception as a two step process. In the first step, spe-
cialized algorithms operate on perceived object hypotheses,
extract perceptual information from the sensor data, and
semantically annotate the respective object hypotheses with
these pieces of information. In a second step, the symbolic
annotations of objects and the whole scene are used as
evidence to probabilistically infer the information that the
robot requests from its perception system. To this end, the
robot has previously learned a joint probability distribution
over objects, their annotations, the co-occurrences of objects,
and the occurrence of objects in different kinds of scenes.

The key idea of the proposed method is depicted in
Figure 1. The robot asks queries, such as “is the category of
the object hypothesis (the RGB-D point cluster) c¢; a cereal
and what is the expected logo on the object hypothesis/point
cluster c3.” These queries are transformed into relational con-
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50 typical real world scenarios with
manually labelled object categories and context information
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Fig. 2: Architecture of the system: (1) segmentation of point clouds into regions of interests, (2) the statistical relational

learning and (3) reasoning system.

ditional probabilities P(category(ci,cereal),logo(cs,?logo) |
E) that take the observed scene as their evidence.

In this paper, we propose an object perception system
that extends the ROBOSHERLOCK' framework for unstruc-
tured information processing in robot perception. We believe
that the formulation of object perception as a relational
probabilistic reasoning problem has several advantages over
alternative approaches. First, using perception algorithms for
collecting perceptual evidence rather than making decisions
makes the use of multiple specialized algorithms straightfor-
ward: they simply add their findings as annotations. Second,
as inferences are drawn probabilistically on the basis of
collected evidence, the system can also handle inconsis-
tent annotations in a meaningful way. Third, the system
can answer queries concerning all aspects contained in the
probabilistic model under the given evidence. Fourth, the
perception system can also exploit the regularities of the
domain with respect to objects and their appearance and the
occurrence/co-occurrence of objects in scenes. We validate
our approach showing how combining very elementary per-
ception mechanism can significantly boost recognition rates,
while also demonstrating how our approach can be thought
of as more than just a recognition framework.

The remainder of the paper is organized as follows. In
Section II we describe the overall system and the annotators,
followed by the presentation of how annotations are com-
bined in Section III. Section IV offers a thorough evaluation
of our proposed method. Finally, we look at some of the more
recent advances in Section V, concluding in Section VI with
future work and discussions.

Uhttp://www.pr2-looking-at-things.com

II. OVERVIEW

We present a perception system that perceives scenes in
prespecified regions of interest such as the top of counters,
the content of drawers, and the content of fridges. It detects
point clusters in these regions that might correspond to
objects and treats these as being unstructured information,
annotating each cluster with abstract information pieces such
as the color, the size, the shape, the text, and the logo
on the respective objects and uses these annotations as
evidence E for probabilistic reasoning. Using a learned joint
probability distribution over annotated scenes, we can then
infer answers to perception-related questions Q by computing
the conditional probability P(Q | E).

Figure 2 gives a more detailed picture of the operation of
our approach. It consists of three main components: (1) an
image annotation component that segments point clouds into
regions of interests that correspond to object hypotheses and
annotates the individual hypotheses, (2) a statistical relational
learning system that learns joint probability distributions over
annotated scenes, and (3) the probabilistic reasoning system.

The image annotation component employs object segmen-
tation mechanisms that detect objects on supporting planes,
in drawers, and refrigerators. As the focus of this paper is the
boosting of object perception through method combination,
we restrict ourselves to scenes where the individual objects
are clearly separable. Approaches that deal with object
recognition in more cluttered scenes include [4], [5], [6].
Dealing with more cluttered scenes is on our future research
agenda.

We employ simple Euclidean clustering in 3D space for
objects located on a supporting plane and segmentation
methods informed by semantic 3D object maps [3] that filter
out everything except for the region of interest and generate



Annotator | Condition MLN Predicate Description
Color Always color(cluster, color) The color annotator returns semantic color annotation based on color
distribution in HSV color space. Colors: blue, red, black, green, yellow,
white. Depending on the distribution, one object can have multiple colors.
Size Always size(cluster, size) The size annotator classifies objects into small or big depending on
distance between extreme points normalized with the distance to the
camera. Values returned: big, small.
Goggles If Google goggles returns | logo(cluster, logo) The annotator sends the image region of interest to the Google Goggles
text or logos text(cluster, text) servers and parses the answer to extract text, logo, and texture information.
texture(cluster, t)
FlatObject If there are objects that shape(cluster, shape) After extraction 3D clusters from the table this annotator looks for
are too flat to be found additional object hypotheses in color space (e.g., napkins, ...).
by the general 3D
clustering
PrimShape | Always shape(cluster, shape) This annotator fits lines and circles to 3D point clusters projected on to the
2D plane using RANSAC [1]. Values returned: box, round
LineMod Confidence that ¢ is one linemod(cluster, category) | This annotator matches each object hypothesis to a set of object models
of the objects looked for that the robot should actively look for using the Linemod algorithm [2].
exceeds threshold
SACmodel | If enough inliers for a shape(cluster, shape) This annotator recognizes cylindrical objects in 3D space. If the number of
model are found inliers found exceeds the given threshold (60% of the total points in a
cluster) the annotator accepts the match. Value returned: cylinder
Location Always scene(scene!) This annotator interprets object positions in terms of a semantic
environment map [3] and returns places such as counter tops, tables,
fridges, and drawers. The depth- and RGB-image are being filtered leaving
only pixels in a pre-defined region of interest.

TABLE I: Description of the annotators, the conditions under which they work and the predicate declarations in the MLN.

object hypotheses in the remaining region of interest. As
some annotators (SacModel, Size, PrimitiveShape, etc.) use
point clouds ([7]) as their input whilst others use RGB
images (Linemod, Color, Goggles), a converter is used to find
the region of interest corresponding to the extracted clusters.
Having a representation of object candidates both in 3D as
well as in image space all annotators can be run on the object
hypotheses in order to attach semantic information to those.

Annotators are specialized perception routines that per-
ceive specific aspects of information. For example, the color
annotator asserts the fact color(c,col) for the cluster c.
Another annotator uses Google Goggles, an internet service
that retrieves web pages that contain images similar to a
given image. Google Goggles works well for distinctively
textured images, logos, and texts. This annotator annotates
object hypotheses with text (text(c,txt)) and logos (logo(c,1)).
A brief description of the annotators used and their operation
and results can be found in Table I.

An example of a pipeline of annotators is depicted in
the upper part of Figure 2. The pipeline first tests the
flatness of the individual object hypotheses. Subsequently,
object hypotheses are annotated with a simple shape, the
color, compared to known object models using the Linemod
algorithm [2]. Finally, text and logo annotations are gen-
erated using the Google Goggles web service. A detailed
performance analysis of the annotators will be presented in
Section IV.

Given the annotations of objects AS, the probabilistic
reasoning component of the perception system can be used
to answer queries about any aspect of the respective proba-
bilistic model Q. The probabilistic model is given by the
joint probability distribution over the combination of the
categories of objects and all possible annotations. The answer
to the query is then the argmaxgP(Q | AS).

The learning process of the joint probability distribution
over annotated scenes is depicted in the lower part of
Figure 2. The learning of the the probability distribution
and the probabilistic reasoning mechanisms are detailed in
Section III.

III. INFORMATION FUSION

In the previous sections, we described how the raw
sensory input data is being transformed into semantically
more meaningful features by application of experts, the so-
called annotators. However, since most of the annotators
producing those object hypotheses are applied independently
of each other, their outputs are not guaranteed to be globally
consistent and they typically do not take into account object
interactions in the current scene. In fact, their annotations
might even be incorrect or contradictory. Therefore, in order
to come up with a final ensemble decision, a strategy for
combining all the annotations is needed.

To this end, we apply state-of-the-art methods from the
field of statistical relational learning (SRL), a subfield of the
machine learning discipline that has emerged and gained a lot
of attraction in the recent couple of years. In SRL models, we
can capture complex object interactions, represent and reason
about object properties, their attributes and the relations that
hold between them. Most notably, the ultimate strength of
SRL models is their capability of allowing for reasoning
about all observations simultaneously, taking into account
interactions between objects and thus achieving a posterior
belief that is guaranteed to be probabilistically sound and
globally consistent.

In particular, we employ Markov Logic Networks
(MLN) [8], a powerful knowledge representation formalism
combining the expressive power of first-order logic (FOL)
and the ability to deal with uncertainty of probabilistic
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Fig. 3: Confusion Matrix for 10-fold cross-validation on the data set of 50 scenes. The rows represent the predictions, ground
truth is given by the columns. Objects with the most severe confusion are knives, forks, spoons and spatulas.

graphical models. As opposed to most traditional machine
learning approaches, learning and reasoning in MLNS is not
restricted to a feature vector of fixed length, but is rather
performed on whole databases of entities and relations.

Maintaining a joint probability distribution over observa-
tions, their class labels and the robot’s current task context
and belief state has several advantages over classical ap-
proaches and makes the systems’ reasoning capabilities go
far beyond traditional classifier systems:

a) collective classification: MLNs are able to simul-
taneously take into account any arbitrary but finite number
of objects for classification. This an important feature for
a perception system, since it captures interactions between
objects in a scene. If a classification system is aware of the
probability of jointly encountering two objects of particular
types, this can tremendously boost the classification accu-
racy in real-world scenes. Encountering milk and cornflakes
together on a table, for instance, is much more likely than
finding cornflakes and ketchup.

b) confidence-rated output: Since the MLN for com-
piling annotations to a final decision is stacked upon the in-
dependent application of experts, such a probabilistic model
is able to compensate for inconsistent annotations or uninfor-
mative features. If, for example, an annotator systematically
confuses the shapes of clusters, the MLN will learn this
erroneous hypotheses and treat them in a meaningful way.

c) generative models: An MLN representing a joint
probability distribution can be used to infer answers to
arbitrary queries about any aspect represented in the model.
As our experiments will show, the MLN can also be used
to reason about the most informative visual features when
looking for a particular type of object in scene, for example.

d) ease of extension: integration of additional task-
specific context information, or new specialized perception
routines is straightforward. They just need to add their
annotations to each of the object hypotheses and can be
declaratively incorporated in the MLN.

A. Markov Logic Networks

More formally, an MLN consists of a set of formulas F
in first-order logic and a real-valued weight w; attached to
each of those formulas F;. The probability distribution over
the set of possible worlds 2" represented by the MLN is
defined as follows:

P(X =x)= %eXp (sz'ni(x)> ’

where x is a complete truth assignment to all predicate
groundings X (i.e. one possible world), n;(x) is the number
of true groundings of formula F; in x, and Z is normalization

constant.
From a logical point of view, the outputs of the feature
annotators can be regarded as tables in a relational database

(M



and thus naturally correspond to predicates in FOL, and
the segmented clusters represent the domain of discourse
of entities we wish apply probabilistic, logical reasoning to.
Furthermore, we can think of the final class label, i.e. the
object category we wish to predict, as an additional predicate.
As an example, consider a scene of two objects ¢; and ¢,
where the ensemble of experts have identified c¢; being a
yellow-ish box with a “Kellogg’s” brand logo on it, and c;
being a round, blue thing. We can capture such a scene in a
relational database as follows:

shape(cy, Box)
color(cy, Yellow)
logo(cy, “Kellogg’s”)
color(cy, Blue)
shape(cy, Round)
category(cy, Cereal)
category(c, Bowl),

where we have manually added information about object
classes in the “category” predicate. In MLNS, it is straight-
forward to create a model putting object attributes into
relation with their class labels, since they provide a simple,
declarative template language for generating probabilistic
models. If we assume, for instance, that we can infer an
object’s category given its shape, a set of weighted formulas
such as

wi = 1og(0.66)
wy =1log(0.33)

shape(?x, Round) N category(?x, Bowl)
shape(?x, Box) A category(?x, Bowl)

can be added to the model, which naturally represent the
rules “everything is a round bowl” and “everything is a
box-shaped bowl” (by default, all variables are universally
quantified in MLNs). Of course, the above rules do not hold
for most of the entities we encounter in the real world and,
in fact, they can be considered mutually exclusive. However,
according to (1), the probability distribution defined by this
MLN indicates that any world in which we encounter a
round bowl is twice as likely as a world in which we
find a box-shaped bowl (assuming all other aspects being
identical). Following this, we add such abstract, coarse “rules
of thumb” to the MLN, modeling connections between
the ensemble experts and the final ensemble decision. The
weight parameters of the resulting MLN can be learned in a
supervised learning manner.

IV. EXPERIMENTS AND RESULTS

With the experiments presented in this section, we will
prove the following properties of the proposed system. We
will show that

1) hypotheses of individual annotators can be significantly

boosted by applying SRL techniques,

2) it is beneficial to take into account object/object cor-

relations in a perceptual classification model,

3) the proposed method is robust towards inconsistent

annotations, which can be treated in a meaningful way,

4) our system’s capabilities go far beyond traditional clas-

sifier systems, which are mainly given by discriminant
functions with dedicated in- and output variables.

Annotator # total # correct Predictive
Annotations Annotations perf. (acc.)

Color 289 231 (79.9%) 17.5%

Goggles 80 — 21.2%

Prim. Shape 336 233 (69.3%)

SACmodel 38 31 (81.5%) 26.1%

FlatObject 142 116 (81.6%)

Linemod 90 45 (50%) 19.6%

Fig. 4: Evaluation of annotators in isolation: Correctness
of their annotations and their predictive performance when
applied in 10-fold cross-validation. Shape, SACmodel and
FlatObject have been aggregated since they all contribute to
the “shape” predicate.

Object [ Accuracy [ Precision | Recall | F;-Score
Bowl 1.00 1.00 1.00 1.00
Cereal 0.98 0.80 0.80 0.80
Chips 0.99 0.83 0.71 0.77
Coffee 0.99 1.00 0.75 0.86
Cup 0.98 0.77 1.00 0.87
Fork 0.90 0.09 0.07 0.08
Juice 0.96 0.75 0.71 0.73
Knife 0.89 0.29 0.32 0.30
Ketchup 1.00 0.88 1.00 0.93
Milk 0.97 0.77 0.67 0.71
Mondamin 0.98 0.64 1.00 0.78
Oil 0.98 0.78 0.64 0.70
Pancake maker | 1.00 1.00 1.00 1.00
Pitcher 1.00 1.00 1.00 1.00
Plate 0.95 0.77 0.82 0.79
Popcorn 0.99 0.83 0.83 0.83
Pot 0.99 0.75 1.00 0.86
Salt 0.99 0.75 0.75 0.75
Spatula 0.93 0.71 0.45 0.56
Spoon 0.91 0.35 0.38 0.36
Toaster 0.99 0.57 1.00 0.73

Fig. 5: Class-specific error measures for 10-fold cross-
validation.

To this end, we arranged and recorded 50 realistic scenes,
each comprising 5-10 instances of 21 different object cat-
egories, which can generally be found in typical kitchen
scenarios. We discern four different kinds of scenarios: a
breakfast table, a cooking scenario, a view into a refrigerator
and a view into a kitchen drawer. The types of scenarios have
been incorporated into each data set and can be regarded
as task-specific knowledge about the current context of an
activity. This is a reasonable presumption, since the location
the robot is currently looking at can be assumed to be known
from e.g. a map of the environment, and co-occurrences
of objects are highly correlated in real-world scenarios.
The object categories for each object have been labelled
manually.

For the MLN we are using for obtaining a final ensem-
ble decision of experts, we employ the logical predicates
described in Table I, which naturally correspond to the
annotator outputs in the system. Two additional predicates
are used for specifying knowledge about the current context
(i.e. the type of scenario) the perceptual task is performed
in and for assigning a class label to each of the clusters in
the scene at hand:



Ground Atom [ Cereal | Chips [ Cup [ Pot

color(c,black) 0.3302 | 0.3476 | 0.2864 | 0.3582
color(c,blue) 0.2954 | 0.3316 | 0.2186 | 0.3148
color(c,red) 0.3852 | 0.3656 | 0.3452 | 0.3388
color(c,white) 0.3508 | 0.4216 | 0.2806 | 0.3768
color(c,yellow) 0.4264 | 0.3484 | 0.4422 | 0.2936
text(c,VITALIS_A) 0.623 | 0.0000 | 0.0000 | 0.0004
logo(c,DrOetker) 0.136 | 0.0006 | 0.0000 | 0.0000
logo(c,Kellogg’s) 0.3734 | 0.0000 | 0.0000 | 0.0008
linemod(c,Pfannerlce) 0.0004 | 0.0000 | 0.0008 | 0.0002
linemod(c,Popcorn) 0.7392 | 0.0006 | 0.0000 | 0.0010
linemod(c,Pot) 0.0008 | 0.0004 | 0.0004 | 0.9994
linemod(c,PringlesVin) | 0.0000 | 0.0000 | 0.0004 | 0.0006
linemod(c,PringlesSalt) | 0.0002 | 0.4986 | 0.0010 | 0.0006
shape(c,box) 0.4806 | 0.3870 | 0.2810 | 0.3556
shape(c,cylinder) 0.3722 | 0.4540 | 0.4010 | 0.4266
shape(c,flat) 0.3226 | 0.3682 | 0.2864 | 0.3862
shape(c,round) 0.3176 | 0.4092 | 0.5182 | 0.4068
size(c,big) 0.368 | 0.3442 | 0.3768 | 0.3292
size(c,small) 0.2626 | 0.2686 | 0.3148 | 0.2836

Fig. 6: (Partial) probabilities for different queries about visual
features conditioned on the object class.

o scene(scene): represents knowledge about the cur-
rent context in which the perceptual task is be-
ing performed. possible contexts are dom(scene) =
{breakfast,cooking,drawer,fridge}

o category(cluster,object!): assigns a class label to each
cluster in the scene. In our experiments, we distin-
guished 21 different object categories (see also Fig-
ure 3).

In the MLN syntax, the “!” operator in a predicate
declaration specifies that this predicate is to be treated as
a functional constraint for the respective domain, i.e. for
every cluster ¢ € dom(cluster), there must be exactly one
true ground atom among the ground atoms for the “category”
predicate. In other words, we require exactly one object
category association for each cluster. Since a particular
cluster or entity cannot be of two different categories at a
time, we argue that this model constraint is a reasonable
assumption.

The following Markov Logic Network has been designed
in order to model correlations between annotator outputs and
the object classes:

wy  size(?c,+?sz) Ashape(?c,+2sp)
Acolor(?c,+?cl) A category(?c, 4-?0bj)
wy  linemod(?c, +2ld) A category(?c, +20bj)
ws  logo(?c,+?2logo) A category(?c, +20bj)
wy  text(?c,+text) A category(?2c, +20byj)
ws  scene(+?s) Acategory(?c, +20bj)
we  category(?cy,+72) A category(2cy, + ) A\2¢y #2¢y,

where the “+” operator specifies that the respective formula
will be expanded to one individual formula for every value
in the respective domain.

The domain “text” of the “text” predicate requires some
special treatment: since its output is based on OCR text
recognition by Google Goggles, this domain is potentially

infinite and noise-prone. Thus, a mechanism is needed for
transforming arbitrary strings into a proper set of symbolic
constants. To this end, we applied a SAHN (sequential, ag-
glomerative, hierarchical, non-overlapping) clustering tech-
nique to the values of the “text” domain in the training
data before running the learning process. As a distance
measure, we chose the well-known Levenshtein distance.
Subsequently, every string (in both the training and test
data) has been replaced by its nearest cluster centroid. This
mechanism mitigates the negative effects of noise in the OCR
annotations, since every unknown text is mapped to a known
string which is explicitly represented in the model.

The weights have been determined by supervised learning
of the manually labeled data using pseudo-log-likelihood
learning with a Gaussian zero-mean prior of ¢ = 10, which
serves regularization purposes.

For evaluating our model’s performance in identifying
object classes of entities in a scene given the observations
from the annotators as evidence, we performed 10-fold cross-
validation on the 50 scenes we recorded. The results are
shown in Figure 3 and 5. As can be clearly seen, our
model achieves reasonably high classification accuracies with
respect to precision, recall and Fq-score. Indeed, the system
achieves F |-scores significantly above 70% for all objects
except for the cutlery. The comparatively low performance on
cutlery is to be expected, since the perceptual capabilities of
the sensors and annotator experts are currently insufficient for
distinguishing between the marginally observable differences
between forks, spoons and knives.

However, we think that the overall performance of the sys-
tem is remarkable compared to the individual performances
of the single annotators in isolation. Figure 4 shows an
evaluation or each of the annotators, counting the number
of times an expert has annotated an object, the correctness
of its annotations as well as the predictive performance
an MLN consisting of only one formula containing the
respective predicate would achieve. Note that Linemod’s low
performance is due to the fact that its main strenth is in
recognizing untextured objects, but we created models for
textured objects as well.

Figure 7 shows the confusion matrices for MLNs that
have been trained with only one annotator each, in particular
the goggles and the shape annotator. As can be seen, the
individual annotators perform poorly on the entire data
set, but each achieves quite good results in a particular
subset. The goggles annotator, on the one hand, shows good
performance on products and textured objects like the cereal
boxes and the juice tetra-paks, but fails on cups and plates.
On the other hand, the shape annotator fails on most of the
products, but succeeds in identifying plates, cups and bowls.
Hence, the single annotators can be regarded complementory
with respect to their individual expertise, though neither of
them is strong enough to perform well on all of the object
classes. The ensemble given by the MLN, however, adapts
to the individual strengths and weaknesses of the experts and
thus can treat contradictory annotator outputs competently in
order to come to a final decision.



Prediction/Truth | & T|C|C & |A |¥ =8 m|E|E|S|a e e Prediction/Truth |2 |0 | T | 2|2 |2 2|8 & | A 8
Bowl 0 00 |0]0]0 [0 [0 0/0[0 0]0]0 0 00 [0 |0 Bowl 10 0 |03 400 |2 ]2 4fof3 4 o 5 3|13|0 |0
Cereal o [8lofofo]o |1 |0 1{ofo ofo]o o oo oo Cereal 0 oo o 0o [o]o ofo]o 0o o 0o ofo]o]o
Chips 0o ofofofo]o o |o ololo ofofo o ofo oo Chips 00 ]0]o0 0 [0 [0]0 0]0]0 0 0 0 0[]0 ]0]0
Coffee 0 oo f2]o]o Jo |o 0Jolo o]ofo o oo oo Coffee 0_0 00 0 [0 [0]0 0]0]0 0 0 0 0[0]0]0
Cup 0_0]0 [0]0]0 [0 |0 000 0]0 [0 0 00 00 Cup 00 [7]0 3]0 [0]5 7]0]0 0 0 0 0[1]0]0
Fork 10 04 [9[20[15]0 |1 [19 7|48 ]6 3[28]5 6 4[16]16]4 Fork 00 ]0]0 0 [0 [0]0 0]0]0 0 0 0 0]0]0]0
Tuice 0 2|2 [0[0 [0 [14][0 [0 B3[1[2]0 00 |1 0 0][3 |00 Juice 0 _10]0 |9 0 [0 [13]0 0]6]0 0 6 1 1]1 0|4
Ketchup 0 01 ]0]0 [0 [0 [5]0 0[0]0][0 0[]0 ][0 0 0]0 00 Ketchup 00 ]0]0 0 [0 [0]0 0]0][0 0 0 0 0[0]0]0
Knife 0 00 [0]0 [0 |0 [0][0 0]0]0[0 00 [0 0 0[0 00 Kuife 0 000 0 [12]0 |0 0]0]0 13 0 0 02 ][9]0
Milk 0 00 ]0]0 |0 [0 [0]0 B[0]0]0 00 [0 0 0]0 |00 Milk 0 000 00 [0]0 0]0]0 0 0 0 0]0]0]0
Mondamin o ofofofo o |t |1]o t]1]ofo ofofo o ofo oo Mondamin 00 [0]o0 0 [0 [0]0 0]0]0 0 0 0 0[]0 ]0]0
Oil o ofofofo]o o o]o ofof1]|o ofofo o ofo o |0 Oil 0 0 (00 00 [0]0 000 0 0 0 0]0]0]0
Pancakemaker 0 0 |0 [0 [0 Jo [0 o o ‘oo oo o]o 0o o o o o |0 Pancakemaker 0 0 [0 |0 |0 |0 0o o ]o [0o]o ofo]o 0o o 0o ofo oo
Pitcher 0 00 [0][0 [0 |0 [0]0 0]0]0][0 0]0 0 0 0[]0 00 Pitcher o o ]ojojo o o oo |o]o oflojo 0o o o ofo]o]o
Plate 0 00 [0][0 [0 |0 [0]0 0][0][0][0 0]0 |0 0 0[]0 00 Plate o o lojolo |4 o o7 |0o]o ofofo 11 0 0 0|5 |70
Popcorn 0 0|0 [0[0 [0 |0 [0]0 0]0][0[0 00 0 0 0[]0 00 Popcorn 0o o lojojo o o oo |o]o oflojo 0o o 0o ofo]o]|o
Pot 0 0]0]0]0]0 [0 0|0 0]0]0]0 0[]0 ][0 0 0000 Pot 0 o JoJojo Jo o oo [o]o ofo]o 0o o 0o ofo]o]o
Salt 0 0]0]0J0]0 [0 (0|0 0]0|0O]0O 00 0 0 00 |00 Salt 0 0 0 ]0]0 |0 0 00 [0]0 0]0]0 0 0 0 0]0]0]0
Spatula 0o oo |1fo o |1 ]ofo ofofloflo o|o|o o of3 0|0 Spatula 0 0 ][0 ]0]0 0 0 00 [0]0 0]0]0 0 0 0 0[0]0]0
Spoon o ofofofo|o o oo ofofojo ofofo o ofo oo Spoon 0 0 0 ]0]0 |0 0 00 [0]0 0]0]0 0 0 0 0][0]0]0
Toaster 0 oJofofo]o Jo Jo]o o]ojofo ojo o o ojo oo Toaster 0 0 J0]0]0 J0 0 00 [0]0 0]0J0 0 0 0 0]0]0]0

(a) 10-fold cross-validation using only the Goggles annotator.

(b) 10-fold cross-validation using only the shape annotator.

Fig. 7: Evaluation of 2 of the annotators in isolation, i.e. just considering them in the MLN. The results show that the
different annotators complement each other and compensate for the errors of the other.

Inferring the most probable categories given the observed
properties of each objects is only one possibile kind of
queries the system can answer. Indeed, the learned joint
probability distribution on objects and their attributes allows
reasoning about arbitrary queries with respect to any variable
that is contained in the model. Our approach can also be used
to reason about the perceptual features to be expected when
looking for a particular object in a scene. If the robot is
supposed to find a box of cereals on a breakfast table, for
instance, the following query can be formulated in order to
retrieve the most informative features for distinguishing the
cereal box from other objects:

P ( shape(c, ?sh), color(c, ?¢),

scene(breakfast),
size(c, ?s),1logo(c,17),text(c, %) )

category(c, Cereal)

Figure 6 shows an excerpt of the probability distribution
computed for the above query, where the most probable
solution is printed bold. According to the most probable
solution, we can deduce symbolic descriptions of expected
visual properties of different kinds of objects: The cereals
are expected to be a big, yellow and red box, on which we
can read the text “VITALIS _A”, and the linemod annotator
would consider it popcorn (which is one more example
of how the MLN compensates for the errors of individual
experts).

V. RELATED WORK

Most autonomous manipulation robots employ perception
systems that are trained with appearance models of the ob-
jects they are to detect, recognize, and localize. In operation,
the robot uses a database of trained objects to match them
against the perceived sensor data. Successful examples of
such robot object perception systems are described in [9]
using point features of 3D opaque objects, or MOPED, which
uses visual keypoint descriptors for the learned textured ob-
jects [10] and specialized perception systems for translucent
objects [11]. In the presented work we encapsulate these

methods as annotators, use them as experts, and therefore
boost the performance by exploiting these algorithms.

A variety of methods exist that can handle reasonably
well some of the subproblems of perception. Many of these
methods are complementary and could be combined to
enhance performance. Examples of such methods are door
handle detectors [12]. Again, such methods are to be included
in the future as parts of our system.

With respect to its operation, our approach falls into the
category of unstructured information management systems —
systems that look for segments of unstructured information
that have a deeper structure. In 3D perception, RGB-D
point clouds can be considered as unstructured information
that contain object hypotheses as nuggets of more struc-
tured information. Object hypotheses have several perceptual
features as well as symmetry and compactness properties.
Unstructured information processing and management pri-
marily facilitates hypothesis generation, testing, and ranking
and the use of ensembles of expert methods. Unstructured
information management is primarily investigated in the area
of webscale information systems, most prominently in the
context of the Watson system [13]. In our research, we
transfer and modify this technology for its use in robot
perception.

Ensemble of expert-based systems have proven to be very
successful in the area of machine learning [14] and hold great
promise for boosting the perceptual capabilities of robots.
Polikar [15] presents a thorough analysis of ensemble based
systems, giving several reasons in favor of choosing them
(e.g. statistical, lack or abundance of data, data fusion).

An example of a robotic perception system employing
the ensemble of experts idea is presented by Okada et.
al. [16]. Multiple detectors and views were combined based
on particle filters. The probabilistic fusion of different results
corresponds to a simple rule ensemble, i.e. one that is not
trainable.

In recent years attribute based perception has received a
lot of attention. In the context of robotics Sun et. al. [17]



introduce the combination of appearance attributes and object
names in order to identify objects in a scene. Pronobis et.
al. [?] describe a framework for semantic mapping based
on a combination of object attributes, room appearance and
human input. Our approach is more like a combination of
the two approaches, having as inputs only visual cues of the
objects and the domain knowledge (scene type).

VI. CONCLUSIONS

In this work, we propose a novel perception system for
robots acting in everyday human environments. In contrast to
existing systems, which mainly focus on employing a specific
perceptual algorithm, our approach follows the paradigm of
ensembles of experts — sets of diverse and highly specialized
algorithms that are strategically combined in order to draw
a well-informed final conclusion.

Ensemble-based systems like the AdaBoost algorithm [14]
have been used in previous works, but traditional machine
learning methods suffer from their inability to collectively
classify arbitrary numbers of objects in a scene. The pro-
posed system instead makes use Markov Logic Networks,
a powerful relational probabilistic framwork allowing to
take into consideration also object-interactions like they are
encountered very frequently in real-world scenarios. We
prove the strength of our approach by a profound evaluation
of our system’s performance on a data set 50 typical kitchen
scenarios. We show that the SRL techniques employed are
well-suited for the computation of a posterior belief for
a given query, though the expressiveness of the individual
annotators is quite poor.

In the future, we plan to integrate more and better al-
gorithms (e.g. MOPED for textured objects) in order to
have more experts making decision about the same domain.
Studying how taking into account the confidences of these
experts could improve our system seems as the next most
important step to take.

Given that in a task specific scenario we can query
for the most descriptive features of an object, using the
resulting information will enable the systems to choose the
feature detectors that are most appropriate, and use these
for detection/tracking. Doing so we hope to achieve better
execution times for our perception system.

An interesting future endavour will be to try our system
during robot operation, again making use of the fact that
we can formulate arbitrary queries about any variable that
is contained in the model. For example, given the robots
location in the environment, and the type of object we are
looking for we need to decide upon which actions to take to
find the object as fast as possible (e.g. move closer, query the
memory of the robot, or call specific perception routines).

We argue that the use of ensemble-based systems and
specialized perception routines is a key paradigm for pushing
the perceptual capabilities of our today’s robots to more
versatile and advanced applications.

ACKNOWLEDGEMENT

This work is supported in part by the EU FP7 projects
RoboHow (grant number 288533) and ACAT(grant number

600578).

[1]

[2]

[6]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

L. C. Goron, Z. C. Marton, G. Lazea, and M. Beetz, “Segmenting
cylindrical and box-like objects in cluttered 3D scenes,” in 7th German
Conference on Robotics (ROBOTIK), Munich, Germany, May 2012.
S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time de-
tection of texture-less objects in heavily cluttered scenes,” in IEEE
International Conference on Computer Vision (ICCV), 2011.

D. Pangercic, M. Tenorth, B. Pitzer, and M. Beetz, “Semantic object
maps for robotic housework - representation, acquisition and use,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal, October, 7-12 2012.

A. Richtsfeld, T. Morwald, J. Prankl, M. Zillich, and M. Vincze, “Seg-
mentation of unknown objects in indoor environments,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, 2012, pp. 4791-4796.

A. S. Mian, M. Bennamoun, and R. Owens, “Three-dimensional
model-based object recognition and segmentation in cluttered scenes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 10, pp. 1584-1601, October 2006.

Z.-C. Marton, F. Balint-Benczedi, F. Seidel, L. C. Goron, and
M. Beetz, “Object Categorization in Clutter using Additive Features
and Hashing of Part-graph Descriptors,” in Proceedings of Spatial
Cognition (SC), Abbey Kloster Seeon, Germany, 2012.

R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011, pp. 1-4.

M. Richardson and P. Domingos, “Markov Logic Networks,” Machine
Learning, vol. 62, no. 1-2, pp. 107-136, 2006.

A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast,
B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point
Cloud Library — Three-Dimensional Object Recognition and 6 DoF
Pose Estimation,” Robotics & Automation Magazine, vol. 19, no. 3,
pp- 80-91, September 2012.

A. Collet Romea, M. Martinez Torres, and S. Srinivasa, “The MOPED
framework: Object recognition and pose estimation for manipulation,”
International Journal of Robotics Research, vol. 30, no. 10, pp. 1284
— 1306, September 2011.

I. Lysenkov, V. Eruhimov, and G. Bradski, “Recognition and Pose
Estimation of Rigid Transparent Objects with a Kinect Sensor,” in
Proceedings of Robotics: Science and Systems, Sydney, Australia, July
2012.

T. Riihr, J. Sturm, D. Pangercic, D. Cremers, and M. Beetz, “A
generalized framework for opening doors and drawers in kitchen
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), St. Paul, MN, USA, May 14-18 2012.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer,
and C. Welty, “Building Watson: An overview of the DeepQA project,”
Al Magazine, vol. 31, no. 3, pp. 59-79, 2010. [Online]. Available:
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303

Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in International Conference on Machine Learning, 1996,
pp. 148-156.

R. Polikar, “Ensemble based systems in decision making,” IEEE
Circuits and Systems Magazine, vol. 6, no. 3, pp. 21-45, 2006.

K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori, and M. Inaba,
“Multi-cue 3D object recognition in knowledge-based vision-guided
humanoid robot system,” IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS)., pp. 3217-3222, 2007.

Y. Sun, L. Bo, and D. Fox, “Attribute Based Object Identification,” in
IEEE International Conference on on Robotics and Automation, 2013.



