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ABSTRACT
Robots acting in semi-structured, human environments need to un-
derstand the effects of their actions and the instructions given by a
human user. Simulation has been considered a promising reasoning
technique to help tackle both problems. In this paper, we present a
system that constructs an executable robot program from a linguistic
semantic specification produced by parsing a natural language sen-
tence; in effect, our system grounds the semantic specification into
the produced robot plan. The plan can then be run in a simulated
environment, which allows one to infer more about the plan than
was present in the initial semantic specification. Our system allows
modeling how actions can be modified by subclauses, which we
showcase by a transport action. Simulation runs allow discovery of
better parameters, either locally for a subtask or such that the entire
task is better performed; simulation reveals these parameterizations
may differ.
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1 INTRODUCTION
Many robots today are not lumbering machines toiling in an indus-
trial hall; rather, they are aimed at becoming domestic assistants,
caregivers, teaching aids and companions. These applications bring
with them new challenges. A robot must understand the effects of
its actions on the world, if it is to robustly act in an environment
not specifically designed to be robot fool-proof. It also must under-
stand the humans it shares the environment with, when they offer
commands, requests or advice, despite the fact that human commu-
nication leaves a lot of information unspecified. Though different,
these challenges have been met with related approaches stemming
from the simulation theory of cognition: simulation is used both to
provide an environment where the robot can “play with”, so as to
understand, its own actions[12], as well as a means to ground natural
language understanding in an active representation [7, 11, 13] of
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Figure 1: A deeper understanding of an instruction involves construct-
ing a program to implement it, as well as observing what might happen
in a more or less typical run.

robot behavior, which allows different kinds of reasoning to uncover
what a natural language instruction leaves unsaid.

In this paper we present a system that takes a “semantic specifica-
tion” (semspec) obtained from parsing a natural language instruction
and converts it into a program to be run by a (simulated) robot.
Program creation starts from a few basic building blocks which are
then combined based on the information in the semspec. If more
interpretations (semspecs) can be created from the same NL utter-
ance, then more programs can be tried in simulation. In that case, the
simulation becomes an extra filter for interpretation, because “bad”
interpretations, resulting from failures in NL parsing and semspec
construction, may result in programs that don’t make sense: don’t
run or behave in recognizably bad ways. Unlike some previous ap-
proaches, our system accomodates the creation of program steps
with no correspondent in the initial semspec (such as when translat-
ing a short instruction into a longer sequence of actions). Further, we
allow elements in the subclauses of a semspec to modify the function
corresponding to the main verb either by describing (possibly func-
tional) arguments to it or by replacing it with a function template to
which the original function is an argument; we use this mechanism
to provide the resulting program with failure handling constructs.
Our semantics of language is therefore richer in describing how
behaviors can modify each other and what reactions are known to
recover from failure events. Simulation of the resulting program can
then be used to infer properties about it beyond the description of
the semspec, such as time taken. We use simulation to learn new
parametrizations for robot actions so as to improve performance.

There is an apparent similarity between the system we present
and a task planner, in that both take a usually high-level description
of a task and output a program to perform it. We would like to em-
phasize however that our focus is not on searching for plans; most
tasks a service robot would need to perform are, at the planning



level, simple, and sometimes may even be described explicitly by
the human user via a list of actions for the robot to perform. Our
system is better thought of as a kind of translator, from natural to
a programming language, where its purpose is also, through simu-
lation, to analyze the properties of the resulting program, and thus
gain more understanding of the original sentence.

The contributions of this paper are as follows:
• composing robot programs from a linguistic semantic specifi-

cation (conformant to the Generalized Upper Model)
• grounding natural language understanding into an executable

and expressive representation (the CRAM plan language)
• presenting a natural language understanding through simula-

tion pipeline, where the simulation is used to improve robot
program performance

2 BACKGROUND
In this section we review some previously existing components and
how we use them in our system.

2.1 Generalized Upper Model
The Generalized Upper Model (GUM) [5], an extension of the Pen-
man Upper Model [4], is a linguistic ontology which defines general
concepts and relations for representing the semantics of a natural
language sentence. The representations of semantics (which we will
refer to in this paper as “semspecs”) can be used either for reason-
ing in a natural language understanding system or to guide natural
language generation, as has been done with the KPML system [2],
which can generate English and German sentences from a semspec.
The GUM has also been extended with an ontology for spatial con-
cepts and relations, GUM-Space [1, 3].

In this paper a semspec will be a set of key-value pairs; a key is
unique in a semspec, and the order of keys does not matter. Keys are
concepts or relations from the GUM and its spatial extension. The
values can be literals (symbols or numbers), semspecs, designators
(see section 2.2), or (in our system) function objects. For example, a
sentence such as “set the table” would have the semspec:

[ ( : d i s p o s i t i v e m a t e r i a l a c t i o n . s e t ) ( : a c t e e . t a b l e ) ]

whereas for “set the table for two using the tray” would be:
[ ( : d i s p o s i t i v e m a t e r i a l a c t i o n . s e t ) ( : a c t e e . t a b l e )

( : c l i e n t . [ ( : q u a n t i t y . 2 ) ] )
( : manner . [ ( : a f f e c t i n g s p a t i a l a c t i o n . use )

( : a c t e e . t r a y ) ] ) ]

Semspecs have been used for linguistic analysis and generation; in
that context, they are instances of feature structures. We depart here
from the feature structure formalism in that we allow function objects
to be values; this is because our semspecs are intended to describe an
executable robot program, which they do through a repeated process
of interpretation and program construction. The final, executable
output of interpretation is also a semspec, in which the non-GUM
keys :fn and :args appear, where :fn contains a function object to be
applied to the argument list in :args.

2.2 Cognitive Robot Abstract Machine
The Cognitive Robot Abstract Machine (CRAM) [6] is a set of
tools for the development of cognition-enabled robot programs. Of
interest for us here is the CRAM plan language, a concurrent reactive

plan language in the vein of RPL [15]. The CRAM plan language is
implemented on top of Common Lisp and offers several features of
interest to our system, such as control structures for failure handling
and concurrency, as well as a way to specify arguments to a robot
task at an appropriate level of abstraction through a mechanism
called designators. In general a designator is a list of key-value pairs,
where the keys are unique and the order in which they appear does
not matter; designators may be used to specify an object, a location,
or an action/motion. For example, an object designator indicating
some cup in an environment would be:

( an o b j e c t ( t y p e cup ) )

note that there is no identifier or pose associated for the cup here. A
designator for a location near a cup would be:

( a l o c a t i o n ( n e a r ( an o b j e c t ( t y p e cup ) ) ) )

and finally a designator for an action to move the robot base near the
cup:

( a mot ion ( t y p e go ing )
( t a r g e t ( a l o c a t i o n ( n e a r ( an o b j e c t

( t y p e cup ) ) ) ) ) )

CRAM also has a library of basic action programs, such as per-
ceiving, picking up, and placing an object, navigating with the robot
base, using the end effector to press an object etc. These basic
programs take designators as parameters, and the designators get
“referenced”, i.e. have more concrete data attached to them (such
as an actual cup name or an actual pose) lower in the hierarchy of
subroutines called by the CRAM plans. The referencing process is
done by appropriate reasoners, depending on the designator type and
its keys; e.g. locations are often generated using information about
occupancy and costmaps.

Structurally, designators and semspecs (see section 2.1) are very
similar. The difference is in how our system treats them: a semspec
is something to be interpreted, and the output of an interpretation
step is a (possibly executable) semspec; designators are arguments
to pass to functions. A value in a key-value pair for a semspec may
be a designator, but no value in a designator is a semspec.

Finally, CRAM has the ability to log execution traces [25]. The
logs include information about the task tree (what tasks were run,
which were the subtasks, what were the arguments and the results
such as completion/failure) as well as information about what the
robot perceived. One can then analyze the execution of a plan and,
for example, rate it according to some metric (as we do here) or
answer questions pertaining to the events that happened during the
execution (such as how many cups were put on a tray), or try to find
the cause of a failure.

2.3 Light-weight simulation
CRAM allows programs to be written and tested in special “pro-
jection” environments [17]. Such an environment is a simulation
containing a model of the robot and the obstacles and objects around
it; the Bullet physics engine is used to update the state of the world.
However, unlike in full-fledged simulations such as in the Gazebo
simulator, the physics engine is only turned on “on demand”, and
the intermediate states traversed while a robot performs an action
are skipped over (e.g., moving the robot to a location teleports it
there, and arms assume desired configurations instantly).



Figure 2: System overview: interpretation rules convert a semspec into
robot code, which can be run in a real or simulated environment.

Light-weight simulation, or projection, loses the ability to verify
robot trajectories and cannot directly offer information such as the
time taken by a task. However, it is much faster to perform and still
allows relevant reasoning queries to be answered by the simulator.
One can test, for example, whether certain poses are reachable for
the robot (using an IK solver), whether certain objects are visible
(off-screen rendering), whether arrangements of objects are stable
(by turning the physics engine on for a limited time). Projection is
therefore particularly good at verifying significant events during a
program execution, such as object perception, pick-up, and place-
ment. It offers therefore a fast way to check whether a plan “makes
sense” in the world. Also, as we show in section 4.2, it can be used
to improve parameterization for better plan performance.

3 PROGRAM COMPOSITION
Our approach to translating a semspec into a robot program written
in the CRAM language is rule-based: starting from a semspec which
is a proper feature structure, an executable robot program is obtained
by the application of transformation patterns called interpretation
rules. Feature structures are defined as mappings from feature iden-
tifiers to feature values, which can be simple (numbers or strings),
nested feature structures, or variables, to support unification. We
allow function objects to be values inside our intermediary semspecs
(which are therefore not proper feature structures). This is necessary
because the desired output of interpretation in our case is a program,
so there must be at least one rule translating a semspec into exe-
cutable code. Further, it is more feasible and generalizable to have
rules for assembling parts of a program given parts of the semspec,
rather than attempt to go in one step from a feature structure sem-
spec to executable code. Because of this, our interpretation rules may
contain function code, which means we must commit to a language
to write them in. Since we use CRAM to supply our basic building
blocks, and CRAM is Lisp-based, so are our rules. The resulting
robot program may be run on a real robot, or in simulation, and may
make use of other robot knowledge such as costmaps for navigation
and reachability maps for manipulation, grasping parameterizations
etc. Simulated experience may update these parameter stores. An
overview of our system is given in figure 2.

3.1 Semspec interpretation rules
An interpretation rule is a pair (denoted by “:-”) containing an an-
tecedent pattern and a consequent result, together with a scope re-
striction (denoted by “:@”). The effect of a rule on a semspec is that
if the antecedent unifies with the semspec, then a new semspec is
produced with the structure of the consequent. The scope restriction
is used to constrain where the semspec targeted by the rule is allowed
to appear inside a larger semspec. An example rule is below:

( ( : −
[ ( : a . x ) ( : o ld−key . ? y ) . . . ]
[ ( : new−key . ? y ) . . . ] )

( :@ : c : d ) )

We use “...” in the antecedent to specify that other keys may be
present, but do not restrict matching; an antecedent with no “...” is
matched only to semspecs containing the exact keys in the antecen-
dent and no others. In the consequent, the “...” will get replaced
with the key-values matched to “...” in the antecedent. Values in the
antecedents and consequents are literals, unless the name is preceded
by “?”, in which case they are variables. Variables in the consequent
are replaced with the values they are bound to by the unification
between the antecedent and a semspec. A key-value pair in the an-
tecedent where the value is nil will make the antecedent match only
semspecs in which that key is absent.

Special handling must be taken for extending unification to func-
tion objects. A pattern describing a function object unifies with a
semspec if the function name and signature unify. A name unifies
if the name in the pattern is either a symbol which matches the one
in the semspec, or a variable which then gets bound to the name in
the semspec. Function signatures unify when they have the same
number of mandatory and keyword parameters, and each parameter
name in the pattern unifies with (is either a variable or is equal to)
the parameter name in the semspec. The body of a function never
appears in rule antecedents and does not matter for unification.

Consequents are usually patterns into which to place values taken
from the semspec a rule was applied to. For convenience we also
allow function calls on the values taken from the semspec, and use
the results for the new semspec, as seen in the idiom interpretation
rule for setting the table:

(:−
[ ( : d i s p o s i t i v e m a t e r i a l a c t i o n . s e t ) ( : a c t e e . t a b l e )

( : c l i e n t . ( : q u a n t i t y . ? n ) ) . . . ]
[ ( : a f f e c t i n g s p a t i a l a c t i o n . t r a n s p o r t )

( : a c t e e . , ( ge t−o b j t a b l e s e t ? n ) )
( : p l a c e m e n t . , ( ge t−l o c t a b l e s e t ? n ) )
. . . ] )

where get-obj and get-loc are auxiliary functions returning lists of
designators (object and location respectively) and the "," denotes
that the following expression is to be evaluated first before usage in
a new semspec. More importantly, consequents can also construct
new function objects to place in semspecs, as seen in the example
below:

(:−
[ ( : a . a r i t h m e t i c −op ) . . . ]
[ ( : a . ( de fun op ( a b &key ( f + ) )

( f a b ) ) )
. . . ] )

(:−
[ ( : a . ( de fun op ( ? a ? b &key ? f ) . . . ) )



( : manner . / ) )
. . . ]

[ ( : a . ( de fun d i v ( ? a ? b )
( wi th−f a i l u r e −h a n d l i n g

( ( ze ro−d i v i s i o n −e r r o r ( e )
( p r i n t " Zero d i v i s o r ! " )
( r e t u r n ) ) )

( op ? a ? b : ? f / ) ) ) )
. . . ] )

The first rule produces a semspec where the “arithmetic-op” sym-
bol is replaced with a function object named op that takes two
mandatory and one key parameter. The second rule modifies the op
function object, first by supplying parameters to it (as in this case a
function object parameter) to change its internal operation, but also
surrounds it with an appropriate template to handle the new failure
mode introduced by the parametrization. “with-failure-handling” is a
CRAM plan language construct that catches errors by type, executes
some handling code, and has the option to either exit or retry its
body.

The scope restriction is a list of keys representing a “path” through
a semspec, and is used to modify how semspecs appearing as values
in other semspecs are interpreted. A starred key in a scope restriction
means any number of repetitions of that key, including 0. Rules
without scope restrictions are applicable everywhere. For a rule to be
applicable to a semspec, the semspec must unify with the antecedent
and it must occur in a place compatible with the scope restriction.

Scope restrictions are useful because the location where a semspec
occurs should influence its interpretation: a top-level semspec is
something to execute, and its interpretation eventually results in
a function object and argument list. A semspec appearing as the
value of a :manner key however is something to modify another
action with; in this case, the interpretation result may be several
function objects, semantically annotated with their roles to slot in
the modified action, and/or a template to insert the modified action
in. We provide an example sketch below.

( ( : −
[ ( : a c t i o n . use ) ( : a c t e e . t r a y ) ]
[ ( : fn . ( de fun use ( o )

( do−some th ing o ) ) )
( : a r g s . ( an o b j e c t ( t y p e t r a y ) ) ) ] ) )

( ( : −
[ ( : a c t i o n . use ) ( : a c t e e . t r a y ) ]
[ ( : p r e c e d e . ( de fun f i n d ( )

( p e r c e i v e ( an o b j e c t ( t y p e t r a y ) ) ) ) ) ] )
( :@ : t h i n g * : manner ) )

The first rule triggers on a top-level semspec, and replaces an
instruction to use the tray with some complete and parameterized
program. The second rule triggers on a semspec appearing as a value
in a :manner key, either in the top-level semspec or some lower
one, and produces a function object that may be used later on in the
interpretation process to construct the final program. For the second
rule scope restriction, we use the fact that all keys are members of
an ontology and “thing” is the topmost concept.

3.2 Types of rules
We have found that rules necessary for program creation may have
one of a few purposes, and therefore rules belong to one of a few
categories, which we list below.

• Idiom interpretation are rules that convert a short phrase to a
longer description of the action it signifies (e.g. the equiva-
lent of going from “set the table” to “transport these objects
to these locations”); these rules operate entirely inside the
feature structure formalism (they never generate function
objects)

• Fusion rules construct function objects and designators based
on information in subclauses (e.g. a :manner subclause of the
semspec being used to change the value of the main verb);
they may generate function objects and put them as values in
semspec keys

• Execution preparation rules rewrite a semspec to an exe-
cutable form– one with :fn and :args keys

A rule’s category also indicates when it may be used. Our system
attempts to modify a semspec using idiom interpretation rules until
no such rule is applicable; then it tries the fusion rules until none
apply, and finally the execution preparation rules until an executable
semspec is found. We are exploring how to organize the rules in
a richer, more linguistically motivated hierarchy (e.g., rules about
constructing designators from fusing information from adjectives
into the designator, versus rules to construct actions), and what
implications this may have for rule ordering.

3.3 Rule ordering
Several rules may apply to a semspec or one of its parts, and in
general the order in which rules are applied matters. Some ordering
information, as described above, is given by the rule type, however
there may be many rules with the same type. In this case, our system
uses a preference ordering based on “specificity”, which we describe
below, where a more specific rule is preferred to a less specific one.
However, the specificity ordering is not strict, and we break ties in
the specificity ordering with a user-defined score for each rule. In
the future we will allow several interpretations for a semspec, and
use the simulator to verify which interpretations make sense; this
also offers an opportunity to learn rule preference scores so as to
discourage combinations that seem reliably to perform badly.

Specificity refers to both the scope restriction and antecedent of
a rule. A rule with a more specific scope restriction is preferred
to a rule with a less specific scope restriction. If the scope restric-
tions are equally specific, a rule with a more specific antecedent is
preferred. Specificity in antecedents is given by the subsumption
relation induced by unification: if an antecedent may, through some
substitution of its variables, unify with another, it is less specific.

Specificity of scope restrictions is defined thusly. Longer scope
restrictions are more specific (therefore the empty scope restriction
is the least specific). For scope restrictions of the same length, one
is more specific if all its keys are subclasses (in the GUM ontology)
of the corresponding keys in the other. For scope restrictions of
same length and same string of keys, the one with no starred keys is
preferred. Note that two scope restrictions can be of same specificity
if they are the same length and both use (or don’t use) starred keys
or use keys that are not GUM subclasses of each other.

3.4 Program parametrization
Robot plans require a lot of information; for example, a grasping
action needs to know what object to grasp, which gripper to use and



with what force, a grasping pose around the object, potentially some
auxiliary poses to describe the motion before and after the grasp, etc.
The CRAM plans we use take arguments specified very abstractly via
designators, but at some level of execution those abstract descriptions
need to be made concrete, e.g., when selecting an actual pose such
that it is near some object.

We distinguish between arguments, which are passed explicitly to
CRAM plans, and parameters, which are not, but are still necessary
to inform a robot action. While the distinction is somewhat vague
from a logical point of view (e.g., why should, or shouldn’t, gripper
force be an argument?), it is motivated by the fact that the CRAM
plans we use as building blocks have particular function signatures
containing only part of the information needed to execute them.
A grasping plan takes as argument the object to grasp; any other
information is stored in dynamic variables (Lisp’s version of global
variables). This allows us to write rules that parameterize basic plans
by incorporating them in a closure, as in this example:

(:−
[ ( : d i s p o s i t i v e m a t e r i a l a c t i o n . ( de fun g r a s p ( ? o ) . . . ) )

( : manner . g e n t l y ) . . . ]
[ ( : d i s p o s i t i v e m a t e r i a l a c t i o n .

( de fun g r a s p * ( ? o )
( l e t ( ( * g rasp−s t r e n g t h * (* * grasp−s t r e n g t h *

* s o f t n e s s * ) ) )
( g r a s p ? o ) ) ) )

. . . ] )

4 EVALUATION
4.1 Qualitative evaluation
To get an appreciation of what our system can model, we will look at
a concrete example, the transport action. This is generically defined
by the pair of rules below:

( ( : −
[ ( : a f f e c t i n g s p a t i a l a c t i o n . t r a n s p o r t ) . . . ]
[ ( : a f f e c t i n g s p a t i a l a l a c t i o n .

( de fun t r a n s p o r t ( o b j l o c &key p r e c e d e f o l l o w )
( p r e c e d e o b j )
( go−t o ( a l o c a t i o n ( n e a r l o c ) ) )
( f o l l o w o b j l o c ) )

. . . ] ) )

( ( : −
[ ( : a f f e c t i n g s p a t i a l a c t i o n .

( de fun t r a n s p o r t ( ? o b j ? l o c &key ? p ? f ) . . . )
( : manner .

( ( : p r e c e d e . ( de fun ? p r e c e d e ( ? o b j ) . . . ) )
( : f o l l o w . ( de fun ? f o l l o w ( ? o b j ? l o c ) . . . ) )
( : c i r c u m s t a n c e .

( de fun ? c i r c u m s t a n c e (&key ? a c t e e ? p l a c e m e n t
? a c t i o n )

. . . ) ) ) ) )
. . . ]

[ ( : a f f e c t i n g s p a t i a l a l a c t i o n .
( de fun t r a n s p o r t * ( ? o b j ? l o c )

( ? c i r c u m s t a n c e
: ? a c t e e ? o b j
: ? p l a c e m e n t ? l o c
: ? a c t i o n ( lambda ( ob l c )

( t r a n s p o r t ob l c
: ? p ? p r e c e d e : ? f ? f o l l o w ) ) ) )

. . . ] ) )

The first rule converts a semspec where the affecting spatial action
key is associated to a symbol value (as might be produced by a parser
from a natural language instruction) into a semspec where the affect-
ing spatial action is associated to a function object. The transport
action is described very generically: it involves the robot moving
near a destination location (using the CRAM plan for moving the
robot base, go-to). Before this movement, some preparation happens,
involving some object(s). After this movement, some follow-up hap-
pens involving the same object(s) and destination location(s). Both
the preparation and followup are also arguments to the transport
function.

The second rule creates a new transport function by merging
information present in a manner key. The expected information in the
manner key are function objects describing the preparation, follow-
up, and a circumstance. The circumstance describes an “environment”
to run the action in.

The next rule produces the manner for the default transport action:
if the original semspec has no manner (the user specified nothing
about how to do the transport), then the assumed default is that the
robot will try to pick an object and carry it to the destination. There
may be more objects and destinations however, so the circumstance
is the operation of mapping the transport action over the lists of
objects and destinations: ie., transport is to be repeated for each
object-destination pair. The rule constructs functions from basic
CRAM plans perceive (which takes an object designator as parameter
and updates internal CRAM variables such as the object’s pose), pick
and place (basic object manipulation actions).

( ( : −
[ ( : a f f e c t i n g s p a t i a l a c t i o n . t r a n s p o r t )

( : manner n i l ) . . . ]
[ ( : a f f e c t i n g s p a t i a l a l a c t i o n . t r a n s p o r t )

( : manner
( ( : p r e c e d e .

( de fun f i n d−p i c k ( o )
( go−t o ( a l o c a t i o n ( n e a r o ) ) )
( p e r c e i v e o )
( p i c k o ) ) )

( : f o l l o w .
( de fun p l a c e−o b j e c t ( o l )

( p l a c e o l ) ) )
( : c i r c u m s t a n c e .

( de fun f o r−a l l (&key a c t e e p l a c e m e n t a c t i o n )
( map a c t i o n a c t e e p l a c e m e n t ) ) ) ) )

. . . ] ) )

The user however may suggest that the robot use the tray to carry
the objects, which requires a different modification for the transport
action. The preparation now involves finding the tray and putting
objects on it, while the followup consists in taking the objects from
the tray and putting them at the destinations; we comment out these
steps in the example for clarity. The circumstance also changes: the
tray can carry several objects, but it might not be able to carry all
of them. We use a failure signal to indicate when this happens, and
the failure signal includes information about what objects are not on
the tray yet. Note that the failure signal triggered in the preparation
function is a low level one: it simply says that a location designator
could not be resolved. In the context of preparing to use the tray,
this is interpreted to mean that no more locations are available on
the tray, so the failure signal propagates upward with a different
semantics (tray full). This second failure signal then gets handled in



Figure 3: The “table-setting” task: moving four cups from a table to
a particular arrangement on another. Left: start state; some random-
ization in cup and tray placement. Right: goal state; cups must be at
definite positions.

the circumstance by carrying the objects on the tray, then retrying
the action with the remaining objects and locations. Note that this
is a scope-restricted rule (operating on a semspec inside a :manner
key).
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4.2 Quantitative evaluation
We generate a program for the robot to move four cups from one
table to another using a tray, and we run this program several times
in a light-weight simulation environment. Initial poses for cups and
tray are randomized. When resolving a designator for an “on tray”
location, poses are sampled from a uniform distribution over the
tray surface and validated by checking that placing a cup there
would not collide with other, already present cups. Resolving a
“near location(s)” designator samples a uniform distribution around

Table 1: Distance travelled by the robot base vs. numbers of cups in tray
transfers

Avg Stdev Min Max Count

3+1 20.4 1.3 18.4 23.7 41
2+2 18.0 1.5 14.3 21.3 211

2+1+1 20.9 2.7 14.9 25.7 88

the first target location, and validates samples by checking that no
collisions with objects already present, or with objects that may be
placed at the target locations, occur.

Because the light-weight simulator does not provide an indication
of how much time an action takes (the robot teleports to a destination
configuration), we use the distance travelled by the robot base as a
proxy for execution time. We motivate this choice by observing that
in a real execution the robot base movement would be slow, in part
for safety reasons, and would therefore dominate the execution time.

We ran the program 340 times, and measured the total distance
travelled by the robot base, as well as the number of cups that were
loaded on the tray for each transport action. Because of the cup
poses were obtained by sampling, the robot is not always able to
place three cups on the tray while maintaining enough space between
them; however, if we wanted to optimize tray use in terms of number
of cups carried when running the program in the real world, we could
simply use the cup-on-tray locations found in one of the simulation
runs where three cups were put on the tray at a time. The simulator
therefore, even a simple one like the light-weight simulator we
currently use, is a means to try out and find better parameterizations
for subtasks in a program.

The light-weight simulation also revealed an interesting pattern:
when the robot has to carry four cups and cannot fit all of them on
the tray, then attempting to carry two then two is usually better than
attempting to carry three then one. This is because of where the cup
destinations are located; when the robot carries three cups, it will
need an extra action of going around the destination table. If it only
tries to carry two then two cups, the go-around-the-table action is
not needed. We show statistics over the simulation runs in terms of
distance travelled by the robot base in table 1.

This is a very simple example, but it shows optimizing subtasks
according to some intuitive looking metrics (number of objects
placed on the tray) does not always result in optimality for the
complete task (distance travelled or execution time). Instead, one
might use the simulator to find parameter combinations that perform
better for the global task. Exploratory simulations such as these may
happen when the robot is otherwise idle [22].

5 RELATED WORK
Interpreting natural language to a form usable by robots has been a
very active area of research; we only present some approaches here.

Embodied Construction Grammar (ECG) is a formalism intro-
duced by Bergen[7] for linguistic analysis in which a natural lan-
guage statement is mapped to constructions, which are then used to
parameterize a “mental simulation”. The simulation is performed
over an “active” representation of the semantics of the statement,
also refered to as a schema, which is a Petri net. Note that ECGs



were defined as a tool to analyze language in general, but have also
found a home in robotics. Eppe[10] uses ECGs to create a so-called
“n-tuple”, which then selects and parameterizes a robot plan. Initially,
ECG constructions and schemas were defined by hand, however
Dodge[9] improves coverage of ECGs using data from FrameNet.
We will also look at such data driven approaches to define plan
composition rules in the future.

Misra[16] presents a system for interpreting commands which is
trained on pairs (natural language instruction, execution trace of a hu-
man user performing the instruction in a simulator). We use a library
of basic robot plans, however such a system would be useful to ex-
tend that library. Another system enabling spoken dialog between a
robot and human is presented by Bos[8]: an instruction or question is
interpreted into a first-order logic statement. A theorem checker ver-
ifies its consistency with known context data about the environment
(by attempting to prove its negation) while a model finder attempts
to find a consistent history of the instruction execution/question an-
swer. Roughly speaking, the first order logic statement corresponds
to the robot plan our approach constructs from a semspec, while
the model finder plays a similar role to the simulator generating a
trace of the execution of that plan. The difference is that we use
simulation-based, rather than purely logical reasoning.

Matuszek[14] shows a system to parse a natural language instruc-
tion into a robot control language. It supports sequencing, looping-
until, and other control structures. The correspondence between a
semspec/parse and a robot plan we describe here is more complex
however: it allows inferring actions and conditions not explicitly
mentioned in the natural language instruction, and allows actions to
be alterable in terms of the manner in which they are executed.

Nyga[18, 19] uses Markov logic networks to interpret a natural
language statement into a probabilistic action core, which is a list
of role-value pairs. He formalizes the interpretation problem as
finding the most likely action core given the evidence provided by
the natural language instruction. This approach can disambiguate
actions, do reference resolution, and select appropriate tools for an
action given other action parameters (such as quantity of material
to manipulate). Pomarlan[20] combines it with a reasoning through
simulation approach, however in that work the robot program being
executed is selected based on, rather than constructed from, the
action core.

Learning parameters for robot plans has been investigated by
Stulp[21]. This paper defines the concept of Action Related Place:
a collection of robot base poses associated with a probability of
success for some manipulation action. The learning can be done on
either simulated or real executions of a task. Similar ideas are inves-
tigated by Winkler[24], where parameters related to a manipulation
action are richer than just the base pose. Welke[23] uses collections
of poses to ground symbols for spatial relations during task planning;
likely locations of objects in an environment are learned.

6 CONCLUSIONS
We have presented a system that converts a semantic description of a
natural language sentence into an executable robot program, through
the application of interpretation rules to the semantic description.
The system can handle modifications of actions as specified in man-
ner clauses. The generated programs include failure handling, for

example when the manner of execution specified for an action has
new failure modes compared to the default manner. The programs
can then be run in a simulated environment or on a real robot.

Interpreting a sentence into a program allows the robot to have a
deeper understanding of what the sentence means, because simula-
tion allows it to reason about sequences of events and interactions
between subtasks that are not described in the original semantic
description. The robot can also “explore” parameter settings, to be
used for later program executions. The results of these explorations
depend on both the programs being simulated, the tasks they are
simulated for, as well as the environments they are simulated in,
and are therefore much richer than what could be obtained from
reasoning about a linguistic description of a task alone.

We have used a very simple simulator for this paper. While the
light-weight simulator is fast and captures some important queries,
such as reachability, or collision checking, it is nonetheless fairly
limited in the kinds of phenomena and interactions it can handle.
For future work, we are looking at a physics simulator that can also
model deformable bodies and fluid dynamics. We will also look at
defining a richer ontology of interpretation rules so as to have a more
principled way to order their application to a semantic description.

We have clear guidelines for how to extend the coverage of our in-
terpretation rules. For semspec keys, we aim for full coverage of the
action part of the GUM. For semspec values, we aim for full cover-
age of a kitchen actions grammar being provided by colleagues from
our university, developed by studying large corpora and extended
with user surveys on the correctness of generated sentences and
variations thereof. In terms of basic action concepts implemented in
the rules, we aim to cover a set of basic action concepts emerging
from an ontology of image schemas; we note that the set of basic
actions is unlikely to extend indefinitely.
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